Results for more complicated neural field models have not been that common although they are both biologically more realistic and can produce more interesting dynamic patterns. We are interested in models incorporating space-dependent delays (axonal or dendritic) in the biologically relevant regime of local inhibition-distal excitation connectivity, and models involving various types of adaptation, including dynamic thresholds. The additional features allow interesting solutions even for one-population reductions of the models. We have studied globally periodic solutions by Turing-Hopf instability theory, both linear and weakly non-linear (deriving amplitude equations).